modbatt

Modular Battery Technologies Inc.

Solutions for a Sustainable Future

Open Technology Standard – Extendable Battery Framework™ (EBF)

Comprehensive suite of technologies

- Charge Node™ self-contained intelligent module with internal BMS and isolation
- Charge Mesh[™] resilient, on-demand configurable power system architecture
- Secure device-linked digital twin Linked Control Tokens (LCTs) with enforceable control authority

EBF High Voltage Charge Node™ Module Specification – OPEN STANDARD, ROYALTY FREE

- Several sizes and voltages
- Safety internal relays, series-only connections, precise SOC/SOH prevents thermal runaway
- Security use control and authentication through digital twin LCTs

EBF Diversified Ledger Architecture

- Multiple ledgers in separate cross-referenced domains
- Use Control digital twin LCTs linked with modules and vehicles

ModBatt business model – ModBatt is a technology and transactions company, NOT a manufacturer

Convenience fees on transactions (ModBatt System)

modbatt

ModBatt EBF System Specification

Open Standard based on ModBatt proprietary IP	Evampla
 Royalty free to manufacturers of certified batteries and vehicles 	Chargo Nodo™
 Administered by Safe Battery Alliance – 501(c)(6) Nonprofit 	800V
Charge Mach TM on demand configurable resilient medulerity	3KWh
Charge Wesh ^m on-demand configurable resilient modularity	40KW peak
 Charge Node[™] Module Physical Specification 	200 x 21700 cells
 Charge Node[™] Module Electrical Specification – isolation, BMS, 	3" x 9" x 15"
communications, security, use control through digital twin LCTs	35 lbs
 Supports dissimilar Charge Nodes[™] in parallel 	
	Motorcycle: 1-5
Full ecosystem support	Car: 5-30
 Open hardware and software standard – Extendable Battery Framework™ 	Truck: 50-100+
 Use control – Diversified Ledger Architecture, digital twin LCTs 	
 Full lifecycle management with integrated regulatory oversight and reporting 	

• ModBatt (direct and licensed) IT infrastructure for transactions

- ModBatt IT infrastructure for battery transactions
- Multiple Proof of Stake private blockchains
- Cross-referenced domains with secure protocols
- Digital twin LCTs securely linked with modules and vehicles (patents pending)
- Active use event enforcement mechanisms through authentication controllers
- Open source based with proprietary layers
- Integration with existing systems
- Gradual transition
- Multi-domain chain of custody enforcement

Diversified Ledger Architecture

modbatt

Charge Node™ Module Physical Specification

Charge Node™ Mechanical Specification

- Series connections only no uncontrolled or unmonitored current prevents thermal runaway
- Low impedance interconnect no need for fusible links
- Thermally conductive encapsulation
- Structurally robust
- Environmentally sealed
- All cells equally coupled to both thermal plates
- Facilitates external liquid cooling
- Multiple form factors/voltages

Charge Node™ Module Electrical Specification

Charge Node™ Electrical Specification

- Series connections only no uncontrolled or unmonitored current
- Relays on both terminals
- Mechanical relay on one terminal galvanic isolation
- SiCFET on other terminal fast response
- Smart cell assemblies V and T monitoring each cell, integrated balancing and heating
- Powerline Communications (PLC) between cells and BMS controller
- Powerline Communications (PLC) between modules and pack controller
- Secure protocols, unique module ID

Charge Node™ Scalable BMS Specification

Charge Node™ Smart Cell Circuit

- Compatible with all cell types and chemistries
- Temperature and voltage monitoring at each cell
- AC coupled transverse mode Powerline Communications (PLC) – BTLE transceivers
- Integrated balancing and heating (transistor in linear mode or resistor, heatsink to cell)
- Robust communications protocols
- Low cost IC using common IP blocks
- Unique ID for full lifecycle tracking and authentication

Proprietary information. Patents pending. © 2020-2023 Modular Battery Technologies Inc. dp@modbatt.com

Appendix A List of Filed IP

- US11,380,942 PCT/US21/50518 HIGH VOLTAGE BATTERY MODULE WITH SERIES CONNECTED CELLS AND INTERNAL RELAYS Filed 02-NOV-2020 *module with series connected cells and relays* - ISSUED 7/5/2022
- 2. US11,469,470 PCT/US21/53798 BATTERY MODULE WITH SERIES CONNECTED CELLS, INTERNAL RELAYS AND INTERNAL BATTERY MANAGMENT SYSTEM Filed 04-JAN-2021 *cell monitoring/conditioning circuit, PCBAs, methods* ISSUED 10/11/2022
- 3. US11,563,241 APPARATUS AND METHODS FOR REMOVABLE BATTERY MODULE WITH INTERNAL RELAY AND INTERNAL CONTROLLER Filed 10-FEB-2021 *authentication methods and circuits* ISSUED 12/14/2022
- 4. US11,575,270 PCT/US21/55047 BATTERY MODULE WITH SERIES CONNECTED CELLS, INTERNAL RELAYS AND INTERNAL BATTERY MANAGEMENT SYSTEM Filed 22-FEB-2021 (CIP) *AC coupled comms and methods* ISSUED 02/07/2023
- 5. US11,699,817 PCT/US21/54434 APPARATUS AND METHODS FOR REMOVABLE BATTERY MODULE WITH INTERNAL RELAY AND INTERNAL CONTROLLER Filed 31-MAR-2021 *system, pack and module controllers, blockchain* ISSUED 07/11/2023
- 6. US11,477,027 PCT/US21/55813 APPARATUS AND METHODS FOR MANAGEMENT OF CONTROLLED OBJECTS Filed 11-MAY-2021 *multi-domain management of controlled objects, LCT/blockchain* ISSUED 10/18/2022
- US17/528,903 PCT/US21/60860 ELECTRICAL POWER SYSTEM WITH REMOVABLE BATTERY MODULES Filed 17-NOV-2021 *dissimilar modules in parallel*
- 8. US17/710,759 PCT/US22/24797 **APPARATUS AND METHODS FOR MANAGEMENT OF CONTROLLED OBJECTS** Filed 31-MAR-2022 *linking of identifiable records, authorizer device pairings*
- 9. US17/828,989 PCT/US22/xxx **HIGH VOLTAGE BATTERY MODULE WITH SERIES CONNECTED CELLS AND INTERNAL RELAYS** Filed 31-May-2022 *dissimilar relays, PLC control bus, linear and pwm modes*
- 10. US18/086,515 ELECTRICAL POWER SYSTEM WITH REMOVABLE BATTERY MODULES Filed 12-DEC-2022 *vehicle and stationary installations having a power system, energizing a bus*
- 11. US18/092,806 LOW COST BATTERY CELL MONITORING CIRCUIT Filed 3-JAN-2023 *low cost ASIC*